Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(E)-N'-(4-Hydroxybenzylidene)-4-(quinolin-8-yloxy)butanohydrazide hemihydrate

Ze-Bao Zheng,^a* Ren-Tao Wu,^a Ji-Kun Li^b and Jing-Rong Lu^a

^aDepartment of Chemistry, Taishan University, 271021 Taian, Shandong, People's Republic of China, and ^bDepartment of Materials and Chemical Engineering, Taishan University, 271021 Taian, Shandong, People's Republic of China Correspondence e-mail: zhengzebao@163.com

Received 30 May 2007; accepted 15 June 2007

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.005 Å; some non-H atoms missing; R factor = 0.061; wR factor = 0.187; data-to-parameter ratio = 12.9.

In the title compound, $C_{20}H_{19}N_3O_3 \cdot 0.5H_2O$, the mean planes of the benzene ring and quinoline group make a dihedral angle of 98.6 (3)°. The molecules are connected via intermolecular N-H···O and O-H···N hydrogen bonds into infinite chains. The chains are linked by the water molecule through $O-H \cdots O$ hydrogen bonds (the water molecules are located on crystallographic twofold rotation axes).

Related literature

For related literature, see: Allen et al. (1987); Chen & Shi (1998); Mona & Wageih (2002).

Experimental

Crystal data

C20H19N3O3.0.5H2O V = 3536.2 (6) Å³ $M_r = 358.39$ Z = 8Monoclinic, C2/c Mo $K\alpha$ radiation $\mu = 0.09 \text{ mm}^$ a = 29.905 (3) Å b = 10.4609 (9) Å T = 295 Kc = 11.4613 (10) Å $0.28 \times 0.26 \times 0.23 \text{ mm}$ $\beta = 99.507 \ (4)^{\circ}$

Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.974, \ T_{\max} = 0.979$

Refinement

242 parameters
H-atom parameters constrained
$\Delta \rho_{\rm max} = 0.18 \ {\rm e} \ {\rm \AA}^{-3}$
$\Delta \rho_{\rm min} = -0.36 \text{ e } \text{\AA}^{-3}$

15979 measured reflections

 $R_{\rm int} = 0.094$

3117 independent reflections

1697 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$\begin{array}{l} O1 - H1 \cdots N3^{i} \\ O4 - H20 \cdots O2^{ii} \\ N2 - H2 \cdots O2^{iii} \end{array}$	0.82	1.96	2.766 (4)	168
	0.85	2.26	3.054 (5)	156
	0.86	2.09	2.891 (4)	155

Symmetry codes: (i) x, y - 1, z; (ii) $x, -y + 2, z - \frac{1}{2}$; (iii) -x + 1, -y + 2, -z + 2.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

This project was supported by the Postgraduate Foundation of Taishan University (No. Y05-2-02).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2018).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Chen, C. H. & Shi, J. M. (1998). Coord. Chem. Rev. 171, 161-174.

Mona, M. M. & Wageih, G. H. (2002). J. Coord. Chem. 55, 439-457.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.

Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

supplementary materials

Acta Cryst. (2007). E63, o3284 [doi:10.1107/S1600536807029509]

(E)-N'-(4-Hydroxybenzylidene)-4-(quinolin-8-yloxy)butanohydrazide hemihydrate

Z.-B. Zheng, R.-T. Wu, J.-K. Li and J.-R. Lu

Comment

8-Hydroxyquinoline and its derivatives constitute well known ligands in coordination chemistry (Chen & Shi, 1998; Mona & Wageih, 2002). In our search for new extractants of metal ions and biologically active materials, the title compound, (I), has been synthesized. We report here its crystal structure. The bond lengths and angles in (I) fall within their expected ranges (Allen *et al.*, 1987). The conformation along the C7—N1—N2—C8—C9—C10—C11—O3 bond sequence is *trans*-(-)*gauche-trans-trans-*(+)*gauche* (Fig.1). The mean planes of the benzene ring and quinoline group make a dihedral angle of 98.6 (3)°. In the crystal structure (Table and Fig. 2), intermolecular N—H…O and O—H…N hydrogen bonds into infinite chains. The chains was linked by the water molecular through O—H…O hydrogen bonds (H₂O molecules located on 2 axes).

Experimental

4–(Quinolin–8–yl–oxy)butanohydrazide (0.01 mol), 4–hydroxybenzaldehyde (0.01 mol), ethanol (60 ml) and some drops of acetic acid were added to a 100 ml flask and refluxed for 6 h. After cooling to room temperature, the solid product was separated by filtration. Colourless single crystals suitable for *X*–ray diffraction study were obtained by slow evaporation of a *N*,*N*-dimethylformamide solution over a period of two weeks (m.p. 521 K). Calculated for C₄₀H₄₀N₆O₇: C 67.02, H 5.63, N 11.72%; found: C 66.98, H 5.58, N 11.77%.

Refinement

All H atoms were placed in idealized positions (C—H = 0.93-0.97 Å, O—H = 0.82-0.85 Å, N—H = 0.86 Å) and refined as riding atoms. For those bound to C, $U_{iso}(H) = 1.2U_{eq}(C,N)$ or $1.5U_{eq}(O)$.

Figures

Fig. 1. The molecular structure of (I) with the atoms numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms are drawn as spheres with arbitrary radius.

Fig. 2. Detail of (I) showing part of a hydrogen–bonded chain. H atoms and hydrate have been omitted for clarity and the dashed lines represent the O…N contacts of the hydrogen bonds.

(E)-N'-(4-Hydroxybenzylidene)-4-(quinolin-8-yloxy)butanohydrazide hemihydrate

Crystal	data
---------	------

$C_{20}H_{19}N_3O_3 \cdot 0.5H_2O$	$F_{000} = 1512$
	$D_{\rm x} = 1.346 {\rm Mg} {\rm m}^{-3}$
$M_r = 358.39$	$D_{\rm m} = 1.346 \ {\rm Mg \ m}^{-3}$
	$D_{\rm m}$ measured by not measured
Monoclinic, C2/c	Melting point: 521 K
Hall symbol: -C 2yc	Mo $K\alpha$ radiation
5	$\lambda = 0.71073 \text{ A}$
a = 29.905 (3) Å	Cell parameters from 1208 reflections
b = 10.4609 (9) Å	$\theta = 2.1 - 18.7^{\circ}$
c = 11.4613 (10) Å	$\mu = 0.09 \text{ mm}^{-1}$
$\beta = 99.507 \ (4)^{\circ}$	T = 295 K
$V = 3536.2 (6) \text{ Å}^3$	Block, colorless
Z = 8	$0.28 \times 0.26 \times 0.23 \text{ mm}$

Data collection

Bruker SMART CCD area-detector diffractometer	3117 independent reflections
Radiation source: fine-focus sealed tube	1697 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.094$
T = 295 K	$\theta_{\text{max}} = 25.0^{\circ}$
ϕ and ω scans	$\theta_{\min} = 2.1^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -34 \rightarrow 35$
$T_{\min} = 0.974, T_{\max} = 0.979$	$k = -12 \rightarrow 12$
15979 measured reflections	<i>l</i> = −13→13

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.061$	$w = 1/[\sigma^2(F_o^2) + (0.0571P)^2 + 2.4946P]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.187$	$(\Delta/\sigma)_{max} < 0.001$
<i>S</i> = 1.00	$\Delta \rho_{max} = 0.18 \text{ e} \text{ Å}^{-3}$
3117 reflections	$\Delta \rho_{min} = -0.36 \text{ e } \text{\AA}^{-3}$
242 parameters	Extinction correction: SHELXL97, Fc [*] =kFc[1+0.001xFc ² λ^3 /sin(2 θ)] ^{-1/4}
Primary atom site location: structure-invariant direct	Extinction coefficient: 0.0039 (7)

methods Secondary atom site location: difference Fourier map

sup-2

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor *wR* and goodness of fit S are based on F^2 , conventional R-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating R-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	0.35956 (9)	0.2042 (2)	0.9194 (2)	0.0699 (8)
H1	0.3372	0.2085	0.8673	0.105*
O2	0.47282 (8)	1.0823 (2)	0.8757 (2)	0.0676 (8)
O3	0.33289 (8)	1.1129 (2)	0.6432 (2)	0.0605 (7)
O4	0.5000	0.6796 (5)	0.2500	0.1224 (17)
H20	0.4899	0.7286	0.2989	0.184*
N1	0.44358 (9)	0.7579 (3)	0.8779 (3)	0.0567 (8)
N2	0.46700 (9)	0.8721 (3)	0.9037 (3)	0.0572 (8)
H2	0.4907	0.8734	0.9577	0.069*
N3	0.27664 (9)	1.2141 (3)	0.7713 (3)	0.0552 (8)
C1	0.38355 (12)	0.3144 (3)	0.9218 (3)	0.0546 (9)
C2	0.38057 (12)	0.3950 (3)	0.8245 (3)	0.0553 (9)
H2A	0.3622	0.3729	0.7538	0.066*
C3	0.40460 (11)	0.5066 (3)	0.8322 (3)	0.0551 (9)
H3	0.4027	0.5590	0.7660	0.066*
C4	0.43196 (11)	0.5436 (3)	0.9373 (3)	0.0514 (9)
C5	0.43624 (12)	0.4594 (3)	1.0321 (3)	0.0581 (10)
Н5	0.4556	0.4797	1.1018	0.070*
C6	0.41236 (12)	0.3465 (3)	1.0248 (3)	0.0625 (10)
H6	0.4156	0.2915	1.0895	0.075*
C7	0.45454 (11)	0.6676 (3)	0.9520 (3)	0.0547 (9)
H7	0.4773	0.6811	1.0166	0.066*
C8	0.45321 (11)	0.9804 (3)	0.8454 (3)	0.0511 (9)
C9	0.41337 (12)	0.9737 (3)	0.7488 (3)	0.0630 (10)
H9A	0.3860	0.9767	0.7837	0.076*
H9B	0.4139	0.8920	0.7091	0.076*
C10	0.41111 (11)	1.0783 (4)	0.6579 (3)	0.0600 (10)
H10A	0.4149	1.1605	0.6975	0.072*
H10B	0.4357	1.0677	0.6132	0.072*
C11	0.36679 (11)	1.0763 (4)	0.5748 (3)	0.0614 (10)
H11A	0.3674	1.1358	0.5102	0.074*
H11B	0.3606	0.9913	0.5421	0.074*
C12	0.28823 (11)	1.1024 (3)	0.5954 (3)	0.0496 (9)

supplementary materials

C13	0.27126 (12)	1.0486 (3)	0.4891 (3)	0.0565 (9)
H13	0.2908	1.0149	0.4418	0.068*
C14	0.22403 (13)	1.0442 (3)	0.4511 (3)	0.0622 (10)
H14	0.2127	1.0056	0.3791	0.075*
C15	0.19476 (13)	1.0945 (3)	0.5163 (4)	0.0626 (10)
H15	0.1637	1.0898	0.4893	0.075*
C16	0.21118 (11)	1.1545 (3)	0.6257 (3)	0.0533 (9)
C17	0.18326 (13)	1.2158 (4)	0.6962 (4)	0.0637 (10)
H17	0.1520	1.2164	0.6727	0.076*
C18	0.20197 (14)	1.2736 (4)	0.7978 (4)	0.0692 (11)
H18	0.1838	1.3153	0.8442	0.083*
C19	0.24899 (13)	1.2701 (4)	0.8326 (4)	0.0649 (10)
H19	0.2613	1.3097	0.9032	0.078*
C20	0.25844 (11)	1.1569 (3)	0.6668 (3)	0.0478 (8)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0747 (18)	0.0550 (16)	0.0739 (19)	-0.0169 (13)	-0.0058 (14)	0.0111 (13)
02	0.0666 (17)	0.0543 (16)	0.0755 (18)	-0.0156 (13)	-0.0074 (14)	0.0019 (13)
03	0.0481 (14)	0.0703 (17)	0.0613 (15)	0.0026 (12)	0.0039 (12)	-0.0158 (13)
O4	0.141 (4)	0.109 (4)	0.114 (4)	0.000	0.013 (3)	0.000
N1	0.0551 (18)	0.0462 (18)	0.066 (2)	-0.0064 (14)	0.0020 (15)	0.0010 (16)
N2	0.0522 (17)	0.0499 (18)	0.0643 (19)	-0.0096 (14)	-0.0059 (14)	0.0009 (15)
N3	0.0524 (17)	0.0484 (18)	0.064 (2)	-0.0031 (14)	0.0063 (15)	-0.0029 (15)
C1	0.055 (2)	0.043 (2)	0.064 (2)	-0.0017 (17)	0.0044 (19)	-0.0033 (18)
C2	0.063 (2)	0.048 (2)	0.051 (2)	-0.0030 (18)	-0.0009 (17)	-0.0008 (17)
C3	0.064 (2)	0.051 (2)	0.049 (2)	0.0007 (18)	0.0069 (18)	0.0058 (17)
C4	0.048 (2)	0.046 (2)	0.059 (2)	0.0013 (16)	0.0064 (17)	0.0016 (17)
C5	0.058 (2)	0.056 (2)	0.055 (2)	-0.0040 (18)	-0.0047 (18)	0.0017 (19)
C6	0.072 (2)	0.053 (2)	0.059 (2)	-0.006 (2)	0.001 (2)	0.0119 (19)
C7	0.048 (2)	0.051 (2)	0.063 (2)	-0.0026 (17)	0.0030 (17)	0.0003 (19)
C8	0.047 (2)	0.045 (2)	0.059 (2)	-0.0037 (17)	0.0026 (17)	-0.0004 (18)
C9	0.063 (2)	0.051 (2)	0.069 (2)	-0.0076 (18)	-0.008 (2)	0.0007 (19)
C10	0.050 (2)	0.068 (2)	0.063 (2)	-0.0010 (18)	0.0090 (18)	0.005 (2)
C11	0.061 (2)	0.062 (2)	0.061 (2)	0.0082 (19)	0.010 (2)	0.0068 (19)
C12	0.045 (2)	0.042 (2)	0.059 (2)	-0.0029 (15)	0.0014 (17)	-0.0001 (17)
C13	0.063 (2)	0.048 (2)	0.057 (2)	-0.0026 (17)	0.0042 (19)	-0.0045 (17)
C14	0.071 (3)	0.051 (2)	0.059 (2)	-0.0104 (19)	-0.008 (2)	-0.0001 (19)
C15	0.053 (2)	0.052 (2)	0.077 (3)	-0.0098 (18)	-0.007 (2)	0.007 (2)
C16	0.051 (2)	0.040 (2)	0.066 (2)	-0.0036 (16)	0.0009 (18)	0.0076 (18)
C17	0.050 (2)	0.057 (2)	0.083 (3)	0.0037 (18)	0.009 (2)	0.006 (2)
C18	0.065 (3)	0.064 (3)	0.080 (3)	0.009 (2)	0.018 (2)	-0.003 (2)
C19	0.068 (3)	0.060 (2)	0.066 (2)	0.004 (2)	0.012 (2)	-0.009 (2)
C20	0.052 (2)	0.0364 (19)	0.053 (2)	-0.0028 (15)	0.0026 (17)	0.0000 (16)

Geometric parameters (Å, °)

01—C1	1.355 (4)	С8—С9	1.488 (5)

O1—H1	0.8200	C9—C10	1.505 (5)
O2—C8	1.238 (4)	С9—Н9А	0.9700
O3—C12	1.362 (4)	С9—Н9В	0.9700
O3—C11	1.432 (4)	C10-C11	1.499 (5)
O4—H20	0.8500	C10—H10A	0.9700
N1—C7	1.277 (4)	C10—H10B	0.9700
N1—N2	1.391 (4)	C11—H11A	0.9700
N2—C8	1.345 (4)	C11—H11B	0.9700
N2—H2	0.8600	C12—C13	1.362 (4)
N3—C19	1.308 (4)	C12—C20	1.424 (5)
N3—C20	1.368 (4)	C13—C14	1.408 (5)
C1—C6	1.383 (5)	С13—Н13	0.9300
C1—C2	1.389 (5)	C14—C15	1.348 (5)
C2—C3	1.367 (5)	C14—H14	0.9300
C2—H2A	0.9300	C15—C16	1.416 (5)
C3—C4	1.394 (5)	С15—Н15	0.9300
С3—Н3	0.9300	C16—C17	1.408 (5)
C4—C5	1.389 (5)	C16—C20	1.414 (5)
C4—C7	1.459 (5)	C17—C18	1.349 (5)
C5—C6	1.376 (5)	C17—H17	0.9300
С5—Н5	0.9300	C18—C19	1.397 (5)
С6—Н6	0.9300	C18—H18	0.9300
С7—Н7	0.9300	С19—Н19	0.9300
C1—O1—H1	109.5	С9—С10—Н10А	109.4
C12—O3—C11	119.6 (3)	C11—C10—H10B	109.4
C7—N1—N2	115.4 (3)	С9—С10—Н10В	109.4
C8—N2—N1	121.0 (3)	H10A—C10—H10B	108.0
C8—N2—H2	119.5	O3—C11—C10	106.3 (3)
N1—N2—H2	119.5	O3—C11—H11A	110.5
C19—N3—C20	118.0 (3)	C10-C11-H11A	110.5
O1—C1—C6	118.5 (3)	O3—C11—H11B	110.5
O1—C1—C2	122.4 (3)	C10-C11-H11B	110.5
C6—C1—C2	119.1 (3)	H11A—C11—H11B	108.7
C3—C2—C1	120.2 (3)	O3—C12—C13	126.1 (3)
С3—С2—Н2А	119.9	O3—C12—C20	113.7 (3)
C1—C2—H2A	119.9	C13—C12—C20	120.2 (3)
C2—C3—C4	121.4 (3)	C12—C13—C14	119.8 (3)
С2—С3—Н3	119.3	С12—С13—Н13	120.1
С4—С3—Н3	119.3	C14—C13—H13	120.1
C5—C4—C3	117.7 (3)	C15—C14—C13	121.7 (4)
C5—C4—C7	119.5 (3)	C15-C14-H14	119.2
C3—C4—C7	122.8 (3)	C13—C14—H14	119.2
C6—C5—C4	121.2 (3)	C14—C15—C16	120.1 (3)
С6—С5—Н5	119.4	C14—C15—H15	119.9
С4—С5—Н5	119.4	С16—С15—Н15	119.9
C5—C6—C1	120.3 (3)	C17—C16—C20	117.1 (3)
С5—С6—Н6	119.9	C17—C16—C15	123.9 (3)
С1—С6—Н6	119.9	C20—C16—C15	119.0 (3)
N1—C7—C4	121.2 (3)	C18—C17—C16	119.9 (3)

supplementary materials

N1—C7—H7	119.4	C18—C17—H17	120.1
С4—С7—Н7	119.4	С16—С17—Н17	120.1
O2—C8—N2	119.6 (3)	C17—C18—C19	119.3 (4)
O2—C8—C9	122.2 (3)	C17—C18—H18	120.4
N2—C8—C9	118.1 (3)	C19—C18—H18	120.4
C8—C9—C10	114.8 (3)	N3—C19—C18	123.7 (4)
С8—С9—Н9А	108.6	N3—C19—H19	118.2
С10—С9—Н9А	108.6	С18—С19—Н19	118.2
С8—С9—Н9В	108.6	N3—C20—C16	122.0 (3)
С10—С9—Н9В	108.6	N3—C20—C12	118.8 (3)
Н9А—С9—Н9В	107.5	C16—C20—C12	119.1 (3)
C11—C10—C9	111.3 (3)	H20—O4—H20Ai	105.8
C11—C10—H10A	109.4		
C7—N1—N2—C8	-167.8 (3)	C11—O3—C12—C20	-172.5 (3)
O1—C1—C2—C3	178.4 (3)	O3-C12-C13-C14	179.8 (3)
C6—C1—C2—C3	-2.3 (5)	C20-C12-C13-C14	-1.5 (5)
C1—C2—C3—C4	-1.0 (5)	C12—C13—C14—C15	1.4 (5)
C2—C3—C4—C5	3.9 (5)	C13-C14-C15-C16	0.4 (5)
C2—C3—C4—C7	-173.8 (3)	C14—C15—C16—C17	176.3 (3)
C3—C4—C5—C6	-3.5 (5)	C14—C15—C16—C20	-2.0 (5)
C7—C4—C5—C6	174.3 (3)	C20-C16-C17-C18	0.2 (5)
C4—C5—C6—C1	0.3 (6)	C15—C16—C17—C18	-178.2 (3)
O1-C1-C6-C5	-178.0 (3)	C16-C17-C18-C19	-1.0 (6)
C2—C1—C6—C5	2.7 (5)	C20—N3—C19—C18	0.6 (5)
N2—N1—C7—C4	178.6 (3)	C17-C18-C19-N3	0.6 (6)
C5—C4—C7—N1	-164.0 (3)	C19—N3—C20—C16	-1.4 (5)
C3—C4—C7—N1	13.7 (5)	C19—N3—C20—C12	176.2 (3)
N1—N2—C8—O2	175.1 (3)	C17—C16—C20—N3	1.0 (5)
N1—N2—C8—C9	-2.7 (5)	C15-C16-C20-N3	179.4 (3)
O2—C8—C9—C10	25.9 (5)	C17—C16—C20—C12	-176.5 (3)
N2-C8-C9-C10	-156.4 (3)	C15-C16-C20-C12	1.9 (5)
C8—C9—C10—C11	-171.3 (3)	O3—C12—C20—N3	1.1 (4)
C12—O3—C11—C10	-170.8 (3)	C13-C12-C20-N3	-177.8 (3)
C9—C10—C11—O3	68.2 (4)	O3—C12—C20—C16	178.7 (3)
C11—O3—C12—C13	6.3 (5)	C13-C12-C20-C16	-0.1 (5)
Symmetry codes: i.			

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
O1—H1···N3 ⁱ	0.82	1.96	2.766 (4)	168
O4—H20····O2 ⁱⁱ	0.85	2.26	3.054 (5)	156
N2—H2···O2 ⁱⁱⁱ	0.86	2.09	2.891 (4)	155

Symmetry codes: (i) *x*, *y*-1, *z*; (ii) *x*, -*y*+2, *z*-1/2; (iii) -*x*+1, -*y*+2, -*z*+2.

